Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
1.
Genet Mol Biol ; 47(1): e20220335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593426

RESUMO

Massive sequencing platforms allow the identification of complex clinical phenotypes involving more than one autosomal recessive disorder. In this study, we report on an adult patient, born to a related couple (third degree cousins), referred for genetic evaluation due to ectopia lentis, deafness and previous diagnosis of juvenile idiopathic arthritis. He was biochemically diagnosed as having Classic Homocystinuria (HCU); Sanger sequencing of the CBS gene showed the genotype NM_000071.2(CBS):c.[833T>C];[833T>C], compatible with the diagnosis of pyridoxine-responsive HCU. As he also had symptoms not usually associated with HCU, exome sequencing was performed. In addition to the variants found in the Sanger sequencing, the following variants were identified: NM_001256317.1(TMPRSS3):c.[413C>A];[413C>A]; and the NM_005807.6(PRG4):c.[3756dup]:[3756dup], confirming the diagnosis of autosomal recessive nonsyndromic deafness and Camptodactyly-Arthropathy-Coxa Vara-Pericarditis Syndrome (CACP), respectively. Genomic analysis allowed the refinement of the diagnosis of a complex case and improvement of the patient's treatment.

2.
BMC Neurol ; 24(1): 130, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632524

RESUMO

BACKGROUND: Monogenic autoinflammatory disorders result in a diverse range of neurological symptoms in adults, often leading to diagnostic delays. Despite the significance of early detection for effective treatment, the neurological manifestations of these disorders remain inadequately recognized. METHODS: We conducted a systematic review searching Pubmed, Embase and Scopus for case reports and case series related to neurological manifestations in adult-onset monogenic autoinflammatory diseases. Selection criteria focused on the four most relevant adult-onset autoinflammatory diseases-deficiency of deaminase 2 (DADA2), tumor necrosis factor receptor associated periodic fever syndrome (TRAPS), cryopyrin associated periodic fever syndrome (CAPS), and familial mediterranean fever (FMF). We extracted clinical, laboratory and radiological features to propose the most common neurological phenotypes. RESULTS: From 276 records, 28 articles were included. The median patient age was 38, with neurological symptoms appearing after a median disease duration of 5 years. Headaches, cranial nerve dysfunction, seizures, and focal neurological deficits were prevalent. Predominant phenotypes included stroke for DADA2 patients, demyelinating lesions and meningitis for FMF, and meningitis for CAPS. TRAPS had insufficient data for adequate phenotype characterization. CONCLUSION: Neurologists should be proactive in diagnosing monogenic autoinflammatory diseases in young adults showcasing clinical and laboratory indications of inflammation, especially when symptoms align with recurrent or chronic meningitis, small vessel disease strokes, and demyelinating lesions.


Assuntos
Síndromes Periódicas Associadas à Criopirina , Febre Familiar do Mediterrâneo , Doenças Hereditárias Autoinflamatórias , Meningite , Adulto Jovem , Humanos , Adulto , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/genética , Neurologistas , Adenosina Desaminase/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Febre Familiar do Mediterrâneo/genética , Síndromes Periódicas Associadas à Criopirina/genética , Febre , Fenótipo
3.
Artigo em Inglês | MEDLINE | ID: mdl-38341651

RESUMO

BACKGROUND: Genetic underpinnings in Parkinson's disease (PD) and parkinsonian syndromes are challenging, and recent discoveries regarding their genetic pathways have led to potential gene-specific treatment trials. CASES: We report 3 X-linked levodopa (l-dopa)-responsive parkinsonism-epilepsy syndrome cases due to a hemizygous variant in the phosphoglycerate kinase 1 (PGK1) gene. The likely pathogenic variant NM_000291.4 (PGK1):c.950G > A;p.(Gly317Asp) was identified in a hemizygous state. LITERATURE REVIEW: Only 8 previous cases have linked this phenotype to PGK1, a gene more commonly associated with hemolytic anemia and myopathy. The unusual association of epilepsy, psychiatric symptoms, action tremor, limb dystonia, cognitive symptoms, and l-dopa-responsive parkinsonism must draw attention to PGK1 mutations, especially because this gene is absent from most commercial hereditary parkinsonism panels. CONCLUSIONS: This report aims to shed light on an overlooked gene that causes hereditary parkinsonian syndromes. Further research regarding genetic pathways in PD may provide a better understanding of its pathophysiology and open possibilities for new disease-modifying trials, such as SNCA, LRRK2, PRKN, PINK1, and DJ-1 genes.

4.
Mov Disord Clin Pract ; 11(4): 411-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38258626

RESUMO

BACKGROUND: Genetic prion diseases, including Gerstmann-Sträussler-Scheinker disease (GSS), are extremely rare, fatal neurodegenerative disorders, often associated with progressive ataxia and cognitive/neuropsychiatric symptoms. GSS typically presents as a rapidly progressive cerebellar ataxia, associated with cognitive decline. Late-onset cases are rare. OBJECTIVE: To compare a novel GSS phenotype with six other cases and present pathological findings from a single case. METHODS: Case series of seven GSS patients, one proceeding to autopsy. RESULTS: Case 1 developed slowly progressive gait difficulties at age 71, mimicking a spinocerebellar ataxia, with a family history of balance problems in old age. Genome sequencing revealed a heterozygous c.392G > A (p.G131E) pathogenic variant and a c.395A > G resulting in p.129 M/V polymorphism in the PRNP gene. Probability analyses considering family history, phenotype, and a similar previously reported point mutation (p.G131V) suggest p.G131E as a new pathogenic variant. Clinical features and imaging of this case are compared with those six additional cases harboring p.P102L mutations. Autopsy findings of a case are described and were consistent with the prion pathology of GSS. CONCLUSIONS: We describe a patient with GSS with a novel p.G131E mutation in the PRNP gene, presenting with a late-onset, slowly progressive phenotype, mimicking a spinocerebellar ataxia, and six additional cases with the typical P102L mutation.


Assuntos
Ataxia Cerebelar , Doença de Gerstmann-Straussler-Scheinker , Príons , Ataxias Espinocerebelares , Humanos , Idoso , Doença de Gerstmann-Straussler-Scheinker/diagnóstico , Proteínas Priônicas/genética , Príons/genética , Ataxia Cerebelar/complicações , Ataxias Espinocerebelares/diagnóstico
5.
Brain Commun ; 6(1): fcad273, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173802

RESUMO

Mutations in CLCN2 are a rare cause of autosomal recessive leucoencephalopathy with ataxia and specific imaging abnormalities. Very few cases have been reported to date. Here, we describe the clinical and imaging phenotype of 12 additional CLCN2 patients and expand the known phenotypic spectrum of this disorder. Informed consent was obtained for all patients. Patients underwent either whole-exome sequencing or focused/panel-based sequencing to identify variants. Twelve patients with biallelic CLCN2 variants are described. This includes three novel likely pathogenic missense variants. All patients demonstrated typical MRI changes, including hyperintensity on T2-weighted images in the posterior limbs of the internal capsules, midbrain cerebral peduncles, middle cerebellar peduncles and cerebral white matter. Clinical features included a variable combination of ataxia, headache, spasticity, seizures and other symptoms with a broad range of age of onset. This report is now the largest case series of patients with CLCN2-related leucoencephalopathy and reinforces the finding that, although the imaging appearance is uniform, the phenotypic expression of this disorder is highly heterogeneous. Our findings expand the phenotypic spectrum of CLCN2-related leucoencephalopathy by adding prominent seizures, severe spastic paraplegia and developmental delay.

6.
Neurol Sci ; 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38159148

RESUMO

BACKGROUND: The Brazilian Northeast region is notable for its high prevalence of consanguineous marriages and isolated populations, which has led to a significant prevalence of rare genetic disorders. This study describes the clinical presentation of four affected individuals from the same family, comprising two siblings and their cousins, with ages ranging from 11 to 20 years. METHODS: In a small and isolated community in Northeastern Brazil, affected individuals initially underwent a clinical assessment. Subsequently, written consent was obtained from their legal guardians, and an extensive clinical evaluation was conducted at a medical genetics center. Family data provided the basis for constructing the pedigree, and biological samples (blood or oral swabs) were collected from both affected and unaffected family members. Following informed consent from one patient, Whole Exome Sequencing (WES) was carried out, encompassing exome sequencing, assembly, genotyping, and annotation. A potentially deleterious variant was then singled out for further segregation analysis through Sanger Sequencing, involving both the proband and select family members. RESULTS AND CONCLUSION: These individuals exhibit severe neurodevelopmental delays, encompassing symptoms such as spastic paraplegia, neuropathy, intellectual impairments, and language challenges. Through next-generation sequencing (NGS) techniques, a previously unreported homozygous variant within the ERLIN2 gene linked to spastic paraplegia 18 (SPG18) was identified across all four patients. Also, all patients displayed childhood cataract, expanding the known clinical spectrum of SPG18.

7.
Brain Sci ; 13(8)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37626525

RESUMO

OBJECTIVE: To report a series of atypical presentations of Aicardi-Goutières syndrome. METHODS: Clinical, neuroimaging, and genetic data. RESULTS: We report a series of six unrelated patients (five males) with a subacute loss of developmental milestones, pyramidal signs, and regression of communication abilities, with onset at ages ranging from 7 to 20 months, reaching a nadir after 4 to 24 weeks. A remarkable improvement of lost abilities occurred in the follow-up, and they remained with residual spasticity and dysarthria but preserved cognitive function. Immunization or febrile illness occurred before disease onset in all patients. CSF was normal in two patients, and in four, borderline or mild lymphocytosis was present. A brain CT scan disclosed a subtle basal ganglia calcification in one of six patients. Brain MRI showed asymmetric signal abnormalities of white matter with centrum semi-ovale involvement in five patients and a diffuse white matter abnormality with contrast enhancement in one. Four patients were diagnosed and treated for acute demyelinating encephalomyelitis (ADEM). Brain imaging was markedly improved with one year or more of follow-up (average of 7 years), but patients remained with residual spasticity and dysarthria without cognitive impairment. Demyelination relapse occurred in a single patient four years after the first event. Whole-exome sequencing (WES) was performed in all patients: four of them disclosed biallelic pathogenic variants in RNASEH2B (three homozygous p.Ala177Thr and one compound heterozygous p.Ala177Thr/p.Gln58*) and in two of them the same homozygous deleterious variants in RNASEH2A (p.Ala249Val). CONCLUSIONS: This report expands the phenotype of AGS to include subacute developmental regression with partial clinical and neuroimaging improvement. Those clinical features might be misdiagnosed as ADEM.

8.
Brain Sci ; 13(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37508980

RESUMO

Biallelic loss of function of IMPA1 causes autosomal recessive intellectual developmental disorder 59 (MRT59, OMIM #617323). MRT59 has been reported to present with significant intellectual disability and disruptive behavior, but little is known about the neurocognitive pattern of those patients. Thus, the aims of this study were: (1) to assess the cognitive profile of these patients, and (2) to evaluate their functional dependence levels. Eighteen adults, aged 37 to 89 years, participated in this study: nine MRT59 patients, five heterozygous carriers and four non-carrier family members. All of them were from a consanguineous family living in Northeast Brazil. All IMPA1 patients had the (c.489_493dupGGGCT) pathogenic variant in homozygosis. For cognitive assessment, the WASI battery was applied in nine MRT59 patients and compared to heterozygous carriers and non-carrier family members. Functional dependence was evaluated using the functional independence measure (FIM). Patients showed moderate to severe intellectual disability and severe functional disabilities. Heterozygous carriers did not differ from non-carriers. MRT59 patients should be followed up by health professionals in an interdisciplinary way to understand their cognitive disabilities and functional needs properly.

10.
Neuromuscul Disord ; 33(8): 692-696, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37429773

RESUMO

Mitochondrial DNA depletion syndrome type 11 (MTDPS11) is caused by pathogenic variants in MGME1 gene. We report a woman, 40-year-old, who presented slow progressive drop eyelid at 11-year-old with, learning difficulty and frequent falls. Phisical examination revealed: mild scoliosis, elbow hyperextensibility, flat feet, chronic progressive external ophthalmoplegia with upper eyelid ptosis, diffuse hypotonia, and weakness of arm abduction and neck flexion. Investigation evidenced mild serum creatine kinase increase and glucose intolerance; second-degree atrioventricular block; mild mixed-type respiratory disorder and atrophy and granular appearance of the retinal pigment epithelium. Brain magnetic resonance showed cerebellar atrophy. Muscle biopsy was compatible with mitochondrial myopathy. Genetic panel revealed a homozygous pathogenic variant in the MGME1 gene, consistent with MTDPS11 (c.862C>T; p.Gln288*). This case of MTDPS11 can contribute to the phenotypic characterization of this ultra-rare mitochondrial disorder, presenting milder respiratory and nutritional involvement than the previously reported cases, with possible additional features.


Assuntos
DNA Mitocondrial , Oftalmoplegia Externa Progressiva Crônica , Humanos , DNA Mitocondrial/genética , Oftalmoplegia Externa Progressiva Crônica/genética , Fenótipo , Homozigoto , Atrofia , Exodesoxirribonucleases/genética
11.
Neurol Sci ; 44(10): 3691-3696, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37140833

RESUMO

BACKGROUND: Gonadal dysgenesis with minifascicular neuropathy (GDMN) is a rare autosomal recessive condition associated with biallelic DHH pathogenic variants. In 46, XY individuals, this disorder is characterized by an association of minifascicular neuropathy (MFN) and gonadal dysgenesis, while in 46, XX subjects only the neuropathic phenotype is present. Very few patients with GDMN have been reported so far. We describe four patients with MFN due to a novel DHH likely pathogenic homozygous variant and the results of nerve ultrasound assessment. METHODS: This retrospective observational study included 4 individuals from 2 unrelated Brazilian families evaluated for severe peripheral neuropathy. Genetic diagnosis was performed with a peripheral neuropathy next-generation sequencing (NGS) panel based on whole exome sequencing focused analysis that included a control SRY probe to confirm genetic sex. Clinical characterization, nerve conduction velocity studies, and high-resolution ultrasound nerve evaluation were performed in all subjects. RESULTS: Molecular analysis disclosed in all subjects the homozygous DHH variant p.(Leu335Pro). Patients had a striking phenotype, with marked trophic changes of extremities, sensory ataxia, and distal anesthesia due to a sensory-motor demyelinating polyneuropathy. One 46, XY phenotypically female individual had gonadal dysgenesis. High-resolution nerve ultrasound showed typical minifascicular formation and increased nerve area in at least one of the nerves assessed in all patients. CONCLUSION: Gonadal dysgenesis with minifascicular neuropathy is a severe autosomal recessive neuropathy characterized by trophic alterations in limbs, sensory ataxia, and distal anesthesia. Nerve ultrasound studies are very suggestive of this condition and may help to avoid invasive nerve biopsies.


Assuntos
Disgenesia Gonadal 46 XY , Disgenesia Gonadal , Doenças do Sistema Nervoso Periférico , Síndrome de Turner , Humanos , Feminino , Doenças do Sistema Nervoso Periférico/diagnóstico por imagem , Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/complicações , Disgenesia Gonadal/complicações , Disgenesia Gonadal 46 XY/complicações , Disgenesia Gonadal 46 XY/diagnóstico , Disgenesia Gonadal 46 XY/genética , Síndrome de Turner/complicações
12.
Arq Neuropsiquiatr ; 81(3): 284-295, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37059438

RESUMO

Neuronal ceroid lipofuscinosis type 2 (CLN2) is a rare neurodegenerative genetic disease that affects children in early life. Its classic form is rapidly progressive, leading to death within the first 10 years. The urge for earlier diagnosis increases with the availability of enzyme replacement therapy. A panel of nine Brazilian child neurologists combined their expertise in CLN2 with evidence from the medical literature to establish a consensus to manage this disease in Brazil. They voted 92 questions including diagnosis, clinical manifestations, and treatment of the disease, considering the access to healthcare in this country. Clinicians should suspect CLN2 disease in any child, from 2 to 4 years old, with language delay and epilepsy. Even though the classic form is the most prevalent, atypical cases with different phenotypes can be found. Electroencephalogram, magnetic resonance imaging, molecular and biochemical testing are the main tools to investigate and confirm the diagnosis. However, we have limited access to molecular testing in Brazil, and rely on the support from the pharmaceutical industry. The management of CLN2 should involve a multidisciplinary team and focus on the quality of life of patients and on family support. Enzyme replacement therapy with Cerliponase α is an innovative treatment approved in Brazil since 2018; it delays functional decline and provides quality of life. Given the difficulties for the diagnosis and treatment of rare diseases in our public health system, the early diagnosis of CLN2 needs improvement as enzyme replacement therapy is available and modifies the prognosis of patients.


Lipofuscinose ceróide neuronal (CLN2) é uma doença genética neurodegenerativa rara que afeta crianças nos primeiros anos de vida. A sua forma clássica é rapidamente progressiva, levando à morte nos primeiros 10 anos. A necessidade de um diagnóstico precoce aumenta com a disponibilidade do tratamento de terapia enzimática. Um painel de nove neurologistas infantis brasileiros combinou sua experiência em CLN2 com evidências da literatura médica para estabelecer um consenso no manejo desta doença no Brasil. Eles votaram 92 questões abordando diagnóstico, manifestações clínicas e tratamento, considerando o acesso à saúde no Brasil. Deve-se suspeitar de CLN2 em qualquer criança de 2 a 4 anos de idade que apresente atraso de linguagem e epilepsia. Apesar da forma clássica ser a mais prevalente, podem ser encontrados casos atípicos com diferentes fenótipos. Eletroencefalograma, ressonância magnética, testes moleculares e bioquímicos são as principais ferramentas para investigar e confirmar o diagnóstico. No entanto, o acesso aos testes moleculares é limitado no Brasil, necessitando contar com o apoio da indústria farmacêutica. O manejo da CLN2 deve envolver uma equipe multidisciplinar e focar na qualidade de vida dos pacientes e no apoio familiar. A terapia de reposição enzimática com Cerliponase alfa é um tratamento inovador aprovado no Brasil desde 2018; ele retarda o declínio funcional e proporciona qualidade de vida. Diante das dificuldades para o diagnóstico e tratamento de doenças raras em nosso sistema público de saúde, o diagnóstico precoce de CLN2 precisa de melhorias pois a terapia de reposição enzimática está disponível e modifica o prognóstico dos pacientes.


Assuntos
Lipofuscinoses Ceroides Neuronais , Tripeptidil-Peptidase 1 , Humanos , Brasil , Lipofuscinoses Ceroides Neuronais/diagnóstico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/terapia , Consenso , Qualidade de Vida
14.
J Biol Chem ; 299(5): 104656, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990216

RESUMO

Proliferating cell nuclear antigen (PCNA) is a sliding clamp protein that coordinates DNA replication with various DNA maintenance events that are critical for human health. Recently, a hypomorphic homozygous serine to isoleucine (S228I) substitution in PCNA was described to underlie a rare DNA repair disorder known as PCNA-associated DNA repair disorder (PARD). PARD symptoms range from UV sensitivity, neurodegeneration, telangiectasia, and premature aging. We, and others, previously showed that the S228I variant changes the protein-binding pocket of PCNA to a conformation that impairs interactions with specific partners. Here, we report a second PCNA substitution (C148S) that also causes PARD. Unlike PCNA-S228I, PCNA-C148S has WT-like structure and affinity toward partners. In contrast, both disease-associated variants possess a thermostability defect. Furthermore, patient-derived cells homozygous for the C148S allele exhibit low levels of chromatin-bound PCNA and display temperature-dependent phenotypes. The stability defect of both PARD variants indicates that PCNA levels are likely an important driver of PARD disease. These results significantly advance our understanding of PARD and will likely stimulate additional work focused on clinical, diagnostic, and therapeutic aspects of this severe disease.


Assuntos
Alelos , Ataxia Telangiectasia , Reparo do DNA , Antígeno Nuclear de Célula em Proliferação , Temperatura , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Reparo do DNA/genética , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica/genética , Estabilidade Proteica , Cromatina/genética , Cromatina/metabolismo , Especificidade por Substrato
16.
Arq. neuropsiquiatr ; 81(3): 284-295, Mar. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1439449

RESUMO

Abstract Neuronal ceroid lipofuscinosis type 2 (CLN2) is a rare neurodegenerative genetic disease that affects children in early life. Its classic form is rapidly progressive, leading to death within the first 10 years. The urge for earlier diagnosis increases with the availability of enzyme replacement therapy. A panel of nine Brazilian child neurologists combined their expertise in CLN2 with evidence from the medical literature to establish a consensus to manage this disease in Brazil. They voted 92 questions including diagnosis, clinical manifestations, and treatment of the disease, considering the access to healthcare in this country. Clinicians should suspect CLN2 disease in any child, from 2 to 4 years old, with language delay and epilepsy. Even though the classic form is the most prevalent, atypical cases with different phenotypes can be found. Electroencephalogram, magnetic resonance imaging, molecular and biochemical testing are the main tools to investigateand confirm the diagnosis. However, we have limited access to molecular testing in Brazil, and rely on the support from the pharmaceutical industry. The management of CLN2 should involve a multidisciplinary team and focus on the quality of life of patients and on family support. Enzyme replacement therapy with Cerliponase α is an innovative treatment approved in Brazil since 2018; it delays functional decline and provides quality of life. Given the difficulties for the diagnosis and treatment of rare diseases in our public health system, the early diagnosis of CLN2 needs improvement as enzyme replacement therapy is available and modifies the prognosis of patients.


Resumo Lipofuscinose ceróide neuronal (CLN2) é uma doença genética neurodegenerativa rara que afeta crianças nos primeiros anos de vida. A sua forma clássica é rapidamente progressiva, levando à morte nos primeiros 10 anos. A necessidade de um diagnóstico precoce aumenta com a disponibilidade do tratamento de terapia enzimática. Um painel de nove neurologistas infantis brasileiros combinou sua experiência em CLN2 com evidências da literatura médica para estabelecer um consenso no manejo desta doença no Brasil. Eles votaram 92 questões abordando diagnóstico, manifestações clínicas e tratamento, considerando o acesso à saúde no Brasil. Deve-se suspeitar de CLN2 em qualquer criança de 2 a 4 anos de idade que apresente atraso de linguagem e epilepsia. Apesar da forma clássica ser a mais prevalente, podem ser encontrados casos atípicos com diferentes fenótipos. Eletroencefalograma, ressonância magnética, testes moleculares e bioquímicos são as principais ferramentas para investigar e confirmar o diagnóstico. No entanto, o acesso aos testes moleculares é limitado no Brasil, necessitando contar com o apoio da indústria farmacêutica. O manejo da CLN2 deve envolver uma equipe multidisciplinar e focar na qualidade de vida dos pacientes e no apoio familiar. A terapia de reposição enzimática com Cerliponase alfa é um tratamento inovador aprovado no Brasil desde 2018; ele retarda o declínio funcional e proporciona qualidade de vida. Diante das dificuldades para o diagnóstico e tratamento de doenças raras em nosso sistema público de saúde, o diagnóstico precoce de CLN2 precisa de melhorias pois a terapia de reposição enzimática está disponível e modifica o prognóstico dos pacientes.

18.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477332

RESUMO

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Assuntos
Microcefalia , Animais , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Peixe-Zebra/metabolismo , Barreira Hematoencefálica/metabolismo , Convulsões/genética , Síndrome
19.
Neurol Sci ; 44(1): 319-327, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36094773

RESUMO

BACKGROUND: F abry disease (FD) is an X-linked lysosomal storage disorder with accumulation of globotriosylceramide, causing neurologic involvement mainly as acroparesthesias and cerebrovascular disease. Aseptic meningitis has been reported in 11 patients with FD, but no prior study has correlated alpha-galactosidase (GLA) specific variants with meningitis. We present in this manuscript a family in which a novel GLA pathogenic variant was associated with aseptic meningitis in 2 of 5 family members. METHODS: This study began with identifying the proband, then screening family members for FD symptoms and evaluating symptomatic individuals for genetic and biochemical status. All patients underwent magnetic resonance imaging, and those with headache underwent cerebrospinal fluid (CSF) analysis. RESULTS: Five patients (3 females) from a single family were included in this study. Mean age at diagnosis was 20.6 years. Two patients (40%) had aseptic meningitis; one of them also had cerebrovascular events. C-reactive protein and erythrocyte sedimentation rate were elevated during aseptic meningitis episodes. Both patients responded to intravenous methylprednisolone with resolution of fever, headache, and vomiting. One of them recurred and needed chronic immunosuppression with azathioprine. CONCLUSION: We described aseptic meningitis in a family with a novel GLA variant. Meningitis might be a common phenomenon in FD and not a particularity of this variant. Understanding the mechanisms underlying meningitis and its association with cerebrovascular events may lead to a new paradigm of treatment for stroke in these patients. Further prospective studies with CSF collection in patients with FD and recurrent headache could help to elucidate this question.


Assuntos
Doença de Fabry , Meningite Asséptica , Feminino , Humanos , Doença de Fabry/complicações , Doença de Fabry/tratamento farmacológico , Doença de Fabry/genética , Meningite Asséptica/etiologia , Estudos Prospectivos , Fenótipo , Cefaleia/complicações , Mutação
20.
BMC Neurol ; 22(1): 381, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209056

RESUMO

BACKGROUND: Turner syndrome (TS) is a rare condition associated with a completely or partially missing X chromosome that affects 1 in 2500 girls. TS increases the risk of autoimmune diseases, including Graves' disease (GD). Moyamoya disease is a rare cerebral arteriopathy of unknown etiology characterized by progressive bilateral stenosis of the internal carotid artery and its branches. Both TS and GD have been associated with Moyamoya. Type 2 spinocerebellar ataxia (SCA2) is an autosomal dominant cerebellar ataxia caused by a CAG repeat expansion in ATXN2. We present the first case of Moyamoya syndrome in a patient with a previous diagnosis of TS and GD who tested positive for SCA2 and had imaging findings compatible with an overlap of SCA2 and Moyamoya. CASE PRESENTATION: A 43-year-old woman presented with mild gait imbalance for 2 years. Her family history was positive for type 2 spinocerebellar ataxia (SCA2). She had been diagnosed with Turner Syndrome (45,X) and Graves disease three years before. Brain MRI revealed bilateral frontal and parietal cystic encephalomalacia in watershed zones, atrophy of pons, middle cerebellar peduncles and cerebellum. MR angiography showed progressive stenosis of both internal carotid arteries with lenticulostriate collaterals, suggestive of Moya-Moya disease. Molecular analysis confirmed the diagnosis of SCA2. CONCLUSIONS: With increased availability of tools for genetic diagnosis, physicians need to be aware of the possibility of a single patient presenting two or more rare diseases. This report underscores the modern dilemmas created by increasingly accurate imaging techniques and available and extensive genetic testing.


Assuntos
Doença de Moyamoya , Ataxias Espinocerebelares , Síndrome de Turner , Adulto , Constrição Patológica , Feminino , Humanos , Doença de Moyamoya/complicações , Doença de Moyamoya/diagnóstico por imagem , Ataxias Espinocerebelares/complicações , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/genética , Síndrome de Turner/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...